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The motion of an ensemble of particles in a space-periodic potential well with a weak wavelike perturbation
imposed is considered. We found that slow oscillations of the wave number of the perturbation lead to the
occurrence of directed particle current. This current is amplified with time due to the giant acceleration of some
particles. It is shown that giant acceleration is linked to the existence of resonant channels in phase space.
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In recent years considerable interest has been devoted to
the ratchet effect: the generation of directed particle current
in the absence of any biased forces. This phenomenon is
relevant to a wide range of applications, including controlled
photocurrents in semiconductors �1,2�, motion of cold atoms
in optical lattices �3–5�, transport of passive tracers in mean-
dering jet flows in the ocean �6�, and biological and chemical
systems �see �7� for a comprehensive review�.

The ratchet effect in space-periodic Hamiltonian systems
is associated with the asymmetry of the chaotic region in
phase space �8–10�. Recently a new type of Hamiltonian
ratchets was reported, in which a periodic potential is sub-
jected to a sum of external forces which are periodic in time
and coordinates �11�. Each of the forces induces strong but
local chaotic diffusion in certain areas of phase space. This
effect is achieved by means of resonance between temporal
and spatial oscillations of the perturbation imposed. This
resonance is asymmetric in momentum space, which pro-
vides asymmetry of crossing the separatrix and occurrence of
directed transport. Combining such forces, we can make fi-
nite motion unstable for all ranges of the particle energy. In
this way, even a weak perturbation of the potential can acti-
vate ballistic current of particles with the lowest initial ener-
gies. A similar effect was used in �12� in order to produce
surfatron acceleration.

In the present paper we demonstrate the mechanism pro-
viding simultaneously generation and giant acceleration of
directed current by means of a weak external perturbation.
The possibility of giant acceleration arises due to adiabatic
variations of the perturbation.

Consider an ensemble of noninteracting unit-mass point
particles driven by a wavelike external force. The motion of
each particle is described by the Hamiltonian

H =
p2

2
− cos x + � cos�k̃x + �t� , �1�

where ��1 and the wave number of the perturbation k̃ is a
slowly varying parameter

k̃ = k�1 + a cos �t�, �a� � 1, � � 1. �2�

Physically this condition corresponds to slow libration of the
external force with respect to axis x. Particle trajectories
obey the Hamiltonian equations

ẋ = p, ṗ = − sin x + �k̃ sin � , �3�

where we denote the perturbation phase k̃x+�t as �. Here-
after we shall consider the case when the parameters k and �
have sufficiently large positive values, so that the inequality
d� /dt�1 is satisfied along a particle trajectory, except for
some small resonant region, where

d�

dt
= k̃p − ka�x sin �t + � � 0. �4�

Outside this region the particle dynamics is close to inte-
grable and can be described using the averaging technique
�13�. According to Eq. �4�, the resonant area in phase space is
located along the line given by the equation

pres = −
�

k�1 + a cos ��
+

a� sin �

1 + a cos �
x , �5�

where �=�t. In order to describe the motion inside the
resonant region we derive, using Eqs. �3� and �4�, the “pen-
dulumlike” equation for �:

�̈ − �k̃2 sin � + f�x,p,�� = 0, �6�

where f�x , p ,�� is treated as a slowly varying parameter
given by the equation

f�x,p,�� = ak��2p sin � + �x cos �� + k̃ sin x . �7�

Equation �6� corresponds to the Hamiltonian of the following
form:

H̃��̇,�� =
1

2
�̇2 + �f�x,p,�� + �k̃2 cos � . �8�

If the inequality

�f�x,p,��� � �k̃2 �9�

is satisfied, then the phase portrait corresponding to the
Hamiltonian �8� contains an oscillating resonant region in
�-�̇ space, bounded by a separatrix. Falling into resonance
�4� corresponds to crossing the separatrix and entering this
region. The probability of entering depends on the area of the
resonant region and increases with increasing the difference
between the left- and right-hand sides of �9�. A particle
spends any time inside the resonant zone and then leaves it

PHYSICAL REVIEW E 75, 065201�R� �2007�

RAPID COMMUNICATIONS

1539-3755/2007/75�6�/065201�4� ©2007 The American Physical Society065201-1

http://dx.doi.org/10.1103/PhysRevE.75.065201


with strongly increased or decreased energy. Following
�14–16�, we derive an approximate formula for the energy
jump:

	E = − �k̃�p*�
−


�* sin �d�

�2�H̃ − �f* − �k̃�2 cos ��
, �10�

where k̃�, f*, p*, and �* are values of k̃, f , p, and �, respec-
tively, when the trajectory hits the resonant region. The value
of the integral �10� is extremely sensitive to small changes of
initial conditions; therefore, multiple recurrences to the reso-
nant area cause chaotic mixing in phase space �17–19�.

In the case of a=0 the resonant condition �4� has the
simplest form

kp + � � 0. �11�

It should be emphasized that inequality �9� is fulfilled only if
a particle is not far from an extremum of the unperturbed
potential. Hence the condition �11� should be replaced by the
following one �18�:

p�Eres,x = �l� = pres � −
�

k
, �12�

where l is integer. Using Eq. �12� we find the resonant values
of the energy:

Eres =
�2

2k2 � 1. �13�

Equation �13� determines locations of the chaotic layers in
energy space �11,17,18�. If the chaotic layer induced by reso-
nance �12� coalesces with the near-separatrix chaotic layer,
then the chaotic sea formed has a much larger width in the
lower half-plane of phase space than in the upper one �11�. It
follows from the asymmetry of the condition �12� in momen-
tum space and implies the prevalence of chaos-induced par-
ticle flights towards x=−
.

It is natural to suggest that adiabatic variation of the reso-
nant momentum �12� leads to a gradual displacing of areas of
instability in phase space. If the time scale of diffusive mix-
ing inside the chaotic areas is much smaller than the time
scale of changing the resonant value of momentum �12�, then
these areas play the role of dynamical traps for particles,

so-called stochastic layer traps �SLTs� �20,21�. Consequently
displacement of a chaotic layer in energy space can be fol-
lowed by increasing or decreasing of the mean energy of
particles belonging to it. As will be shown in this paper, a
rather complicated situation occurs if the wave number of the
perturbation varies according to the law �2�.

Substituting Eq. �5� into Eq. �7�, we obtain the expression
for the criterion �9� on the resonant line:

	a�2�− a cos2 � + cos � + 2a�
�1 + a cos ��2 x + sin x −

2a�� sin �

k�1 + a cos ��2	

 �k̃ . �14�

This inequality holds if sin x�0 and, subsequently, x��l,
where l is an integer. When we skip the term 
sin x, we can
rewrite the criterion �14� as follows:

g�x,�� = 	a�2�− a cos2 � + cos � + 2a�
�1 + a cos ��2 x

−
2a�� sin �

k�1 + a cos ��2	 − �k̃ 
 0. �15�

Figure 1 represents the function g�x ,�� with different fixed
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FIG. 1. Function g�x ,�� with x=−1000, x=−20 000,
x=−50 000, and x=−100 000.
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FIG. 2. �a� Mean coordinate, �b� mean momentum, and �c� mo-
mentum variance as functions of time.
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values of x. The parameters of the perturbation we used are
the following: �=0.04, k=12, �=4, a=0.75, and �
=2� /1000. According to this figure, the criterion �14� is sat-
isfied with �x��50 000 for the large intervals of �, centered
at 2�m, where m=0,1 ,2 , . . .. This implies the existence of
those trajectories which, being passed to the resonance area
at once, will visit the resonant area repeatedly on the subse-
quent cycles of pendulum, until the slowly varying phase �
remains close to 2�m. Such particles move along the lines
described by Eq. �5�, towards the point x=0 when
sin ��0 and from it when sin ��0. The latter ones are
capable to perform ballistic flights with increasing velocity.
Accelerating flights extend largely the chaotic sea in momen-
tum space, in a similar way as was reported in �22�. It should
be noted that we did not find any stable regions by construct-
ing a Poincaré map with �=2� and �=2� /1000, even at
large values of momentum �of order 102�.

The occurrence of such ballistic flights is confirmed by
numerical simulation. We computed the evolution of the en-
semble of particles, initially distributed with Gaussian prob-
ability density,

��x,p,t = 0� =
1

2��0x�0p
exp�−

x2

�0x
2 −

p2

�0p
2 � , �16�

where �0x=�0p=0.1. Figure 2 represents the temporal depen-
dence of the mean coordinate, mean momentum, and vari-
ance of momentum. The parameters of the perturbation are
the same as in Fig. 1. It is shown that there occurs a particle
flux directed towards t→−
. The mean momentum grows
nonmonotonically, and abrupt accelerations are alternating
with abrupt slowing down. Acceleration takes place when the
slow phase � is close to 2�m, which is consistent with our

analysis. Each act of acceleration is followed by a steplike
increase of the momentum variance. It should be emphasized
that the momentum variance is much larger than the mean
momentum, which indicates the presence of particles with
very high velocities. Figure 3 shows that accelerating par-
ticles form jets along the resonant line �5�, which is cut ac-
cording to the criterion �15�. The first significant jet becomes
apparent at t�1300. Accelerating particles follow the reso-
nant line until t�1400 and then leave the resonant zone. It
should be noted that strongly accelerated particles never re-
turn into the resonant zone again. The formation of later jets
is demonstrated in Fig. 4, where instantaneous particle dis-
tributions at t=3200, t=5200, and t=9200 are presented. The
evolution of the particle cloud is also presented in the media
file, which is available at �23�.

We can distinguish three stages of the evolution of the
particle ensemble. At the first stage directed current is acti-
vated. Until a particle is not far from x=0, the location of the
resonant zone is determined by formula �11�—i.e., by the

instantaneous value of the ratio � / k̃�t�. It infers that the ini-
tial particle cloud is placed inside the chaotic layer caused by

resonance with pres=−� / k̃�t=0�=−4/21. An adiabatic de-
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FIG. 3. Particle distribution in phase space at �a� t=1300 and
�b� t=1400. The resonant channel is marked by the line.
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FIG. 4. The same as in Fig. 2 at �a� t=3200, �b� t=5200, and
�c� t=9200.
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crease of k displaces this layer to the separatrix. The time of
diffusive mixing inside the chaotic layer is much smaller
than 2� /�, so that the particle cloud follows the chaotic
layer. At �=� the chaotic layer caused by the resonance �4�
merges into the near-separatrix chaotic layer, which leads to
the occurrence of ballistic particle current towards x=−
.

The second stage starts when the particle cloud becomes
wide enough and some particles are capable of falling into
the resonant channels described by Eq. �5�. This stage is
characterized by fast growth of the momentum variance due
to events of giant acceleration. Note that some particles turn
around and then perform ballistic flights in the opposite di-
rection. Nevertheless, the number of particles accelerating in
the direction x→−
 is much larger, and therefore the turned
particles give a negligible contribution to the resulting par-
ticle flux. Since the resonant channels have a finite length,
one can call the zone where they exist the accelerating zone.

The third stage is not presented in the figures. It starts
when the particle cloud becomes very wide and only a neg-

ligible fraction of the particle ensemble remains within the
accelerating zone. At this stage the momentum variance
achieves saturation and stops increasing.

In conclusion, in this work we demonstrated the effect of
giant particle acceleration in the simple space-periodic
Hamiltonian system subjected to a slowly modulated exter-
nal force. The effect arises from the specific topology of
resonance �4� in phase space, which permits the capture of a
particle into the accelerating channel.
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